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Linear response analysis in the nonequilibrium steady state �Gaussian regime� provides two independent
fluctuation-response relations. One, in the form of the symmetric matrix, manifests the departure from the
equilibrium formula through the quantity so-called irreversible circulation. The other, in the antisymmetric
form, connects the asymmetries in the fluctuation and the response function. These formulas represent char-
acteristic features of fluctuations far from equilibrium, which have no counterparts in thermal equilibrium.

DOI: 10.1103/PhysRevE.77.050102 PACS number�s�: 05.40.�a, 05.70.Ln

It is now well recognized that the macroscopic response
property of a system near thermal equilibrium is closely re-
lated to the dynamical fluctuations of its constituent elements
in the scale down to the mesoscopic to molecular size. This
striking connection is formulated in terms of the linear re-
sponse theory and known as the fluctuation-dissipation theo-
rem �FDT� �1�. The theorem is a consequence of the micro-
scopic reversibility and directly linked to the symmetry of
the response function in the system with multiple degrees of
freedom, i.e., Onsager’s reciprocal relation for the transport
coefficients �2�. These concepts play a crucial role for our
understanding of the dynamic hierarchical structure of na-
ture.

Away from equilibrium, however, the FDT is generally no
longer valid and associated asymmetries show up as a key
feature of the nonequilibrium state. This statement is true
even for the system characterized by Gaussian fluctuations
with the broken time-reversal symmetry, in which the ab-
sence of the detailed balance does not allow the character-
ization of fluctuations from the measured response function.
Indeed, recent studies have reported the involved fluctuation-
response relation in nonequilibrium systems with negligible
nonlinearity, in which the equilibrium FDT formula is bro-
ken in such a way that the correlation and the response func-
tion evolves differently with time. Examples include the
driven colloids �3�, dissipative systems, i.e., granular materi-
als �4,5�, and some phase-ordering systems under shear flow
�6�. Here the origin of the complexity arises not from the
nonlinearity but from the coupling between different degrees
of freedom.

The aim of the present Rapid Communication is to eluci-
date the fluctuation-response relation in the nonequilibrium
Gaussian regime by focusing on asymmetries in cross corre-
lations. We shall show that there is no complication due to
the different temporal dependence in a matrix representation
and all the nonequilibrium effects appear as the FDT ratio
matrix, which consists of the intensity of the noise and the
so-called irreversible circulation of fluctuation as a manifes-
tation of the violation of the detailed balance.

To survey the problem under consideration, we first em-
ploy a simple polymer model under shear flow, for which
both the correlation and the response function can be calcu-

lated easily. We then proceed to the general argument based
on the linear response analysis applied to the nonequilibrium
steady state, in which the dynamics of fluctuations obey
Gaussian statistics. The characteristic of nonequilibrium
fluctuation-response relation is nicely demonstrated by de-
composing it into symmetric and antisymmetric parts. In par-
ticular, the antisymmetric part of the response concerns the
deviation from the reciprocal relation and one can prove the
exact relationship between it and the nonequilibrium compo-
nent of the fluctuation. We then argue that the results persist
even to the nonlinear dynamics provided that the fluctuation
around the secular motion is Gaussian, as is usually expected
for macroscopic systems.

Polymer in shear flow. Let us consider two beads con-
nected by a harmonic spring in the thermal bath of the tem-
perature T. Although simple, this model, called the dumbbell
model, enables one to capture basic rheological properties of
polymer solutions �7�. Being placed in, for instance, a shear
flow, the model provides one of the simplest examples, in
which the detailed balance condition is violated. The exten-
sion to a more realistic model with internal modes is straight-
forward by introducing Rouse modes. Each bead bears a di-
pole, or simply the electric charge �q of opposite signs at
both ends so as to be manipulated externally by the time-

dependent electric field E� �t�. The equation of motion for the
end-to-end distance x� = �x ,y ,z� of the dumbbell in flow field
is given by

��ẋi − �ijxj� = − kxi + wi�t� + f i
�p��t� , �1�

where �, k are the friction and spring constant, which set the

relaxation time �0=� /k, f��p��t�=2qE� �t� is the probing force,
and w� �t� is the Gaussian distributed random force with zero
mean and the variance �wi�t�wj�t���=2�T�ij��t− t��. The
bracket denotes the statistical average in the steady state and
the repeated indices imply the summation. The Boltzmann
constant is set to be unity throughout the paper. We set the
direction of the flow and the velocity gradient to be x and y
axes, respectively, i.e., the velocity gradient tensor �ij
= �̇�12. Since the vorticity �z� direction is not affected by the
flow, we concentrate on the dynamics in the x-y plane. Equa-
tion �1� is easily solved, leading to the steady state correla-
tion function Cij�t− t��= �xi�t�xj�t��� in the absence of the ex-
ternal field,*sakaue@scphys.kyoto-u.ac.jp
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where the dimensionless shear rate W= �̇�0 is introduced.
The response property is examined by switching on the con-
stant electric field at time t= t0 and following the average
evolution of the dumbbell toward the new stable state,

�xi�t − t0��p = Rij�t − t0�f j
�p�, �3�

where the subscript p indicates the presence of the probe
force and Rij�t���0

t Xij�s�ds is the integrated response,

R�t� =
1

k�1 − e−t/�0 W1 − e−t/�0�1 +
t

�0
	�

0 1 − e−t/�0

 . �4�

At equilibrium �W=0�, these quantities are connected
through FDT,

TXij�t� = −
d

dt
Cij�t� �5�

or equivalently TRij�t�=Cij�0�−Cij�t�. Now, a shear flow
breaks the detailed balance and the nonequilibrium effect is
often quantified by the FDT ratio Tij

�FDT��t�
= �Cij�0�−Cij�t�� /Rij�t�. In Fig. 1, we plot the FDT ratio of
the dumbbell under shear. The same or similar plots were
reported in various systems �3–5�. Individual components of
the response and the correlation evolve differently with time;
thus, the FDT ratio is time dependent in the short time and
approaches the static value ��T� at longer time t��0. Our
crucial observation is that the relation can be cast into the
following matrix form:

Xij�t�	 jk = −
d

dt
Cik�t� , �6�

where the matrix 	ij has the dimension of temperature and is
expressed as

� � ��X̃�0��−1 = T� 1 −
W

2

W

2
1 
 , �7�

with 
ij = �Cij�0��−1 and the static susceptibility X̃ij�0� �see
Eq. �13��. Although compact, this formula is yet useless be-
cause of the presence of the involved quantity 	ij. This ma-
trix, while it reduces to the bath temperature �thus, scalar
quantity�, i.e., 	ij =T�ij at equilibrium, is responsible for all
the nonequilibrium effect, which makes Eq. �6� distinct from
Eq. �5�. We shall explore the meaning of this factor in the
general linear stochastic system discussed below.

General model. Let us consider a classical system �with n
gross variables� coupled to a heat bath at temperature T. In
the Markovian level of description, the dynamical variable
x� = �x1 ,x2 , . . . ,xn� obeys the following Langevin equation:

ẋi�t� = − Kijxj�t� + �i�t� + vi
�p��t� , �8�

where the matrix Kij represents the regression to the secular

motion, ���t� is a random force, and a weak perturbation
v� �p��t� is switched on when probing the response property of
the system. A random force is assumed to be Gaussian
white noise with zero mean and the variance
��i�t�� j�t���=2Dij��t− t��. The regression matrix can be gen-
erally decomposed into two parts Kij =Kij

�1�+Kij
�2�. The first is

associated with the conservative force Kij
�1�xj =Lij� jV�x��,

where Lij is a mobility matrix and V�x��= �1 /2�Uijxixj is a
potential energy. The matrices Lij and Uij are both symmet-
ric. The second part Kij

�2�, on the other hand, represents the
contribution from nonconservative forces, which drives the
system out of equilibrium. The steady state distribution func-
tion is

P�x�� =
exp�− ��x���

� dx� exp�− ��x���
�9�

with a quadratic generalized potential ��x��= �1 /2�
ijxixj.
Now we switch on the probe force f i

�p��t�=Lij
−1v j

�p��t�. The
linear response of the system is described by

�xi�t��p = �
−

t

dt�Xij�t − t��f j
�p��t�� , �10�

where Xij�t� is a response function. If one keeps applying a

constant force f��p� for enough time, the system will eventu-
ally settle in a new steady state with the average and the
distribution function given, respectively, by

�xi�p = X̃ij�0�f j
�p� �11�

and

2.0

1.5

1.0

T(FDT) /T

T(FDT) /T

0 5 t/τ0
10

W=1.5
xx

sum

FIG. 1. �Color online� Time evolutions of the FDT ratio �x com-
ponent�. The ratio is sometimes defined using the sum of all
components; Tsum

�FDT��t�=��i,j��Cij�0�−Cij�t� /��i,j�Rij�t�. Both asymp-
totically approach the static values Txx

�FDT��t�→T�1+W2 /2� and
Tsum

�FDT��t�→T�1+W2 / �2�2+W���.
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Pp�x�� =
exp�− �p�x���

� dx� exp�− �p�x���
, �12�

where the static susceptibility is defined by1

X̃ik�0� = �
0



dt Xik�t� = Kij
−1Ljk. �13�

By expanding �p= �1 /2�
ij�xi− �xi�p��xj − �xj�p� and re-

taining only a linear term in f�p, one obtains

�p�x�� = ��x�� − X̃ij�0��i��x��f j
�p� + O��f��p��2� . �14�

Putting Eq. �14� into Eq. �12� gives the following relation
between P�x�� and Pp�x�� in the linear response regime:

Pp�x�� � P�x���1 + X̃ij�0��i��x��f j
�p�� = P�x���1 + 	ij

−1xif j
�p�� ,

�15�

with the matrix 	ik= �
ijX̃jk�0��−1 introduced in Eq. �7�.
To examine the dynamic response, we then turn off the

probe force, say, at t=0, and follow the relaxation to the
original steady state. During this relaxation process, the av-
erage is expressed as

�x��t��relax =� dx� x�P�x�,t� . �16�

The probability distribution function at time t is connected
with the initial �t=0� one through

P�x�,t� =� dx��G�x�,x��;t�P�x��,0� , �17�

where G�x� ,x�� ; t� is a propagator of the Fokker-Plank equa-
tion corresponding to Eq. �8�. By noting P�x� ,0�= Pp�x�� and
using Eq. �15�, one can transform Eq. �16� as follows:

�x��t��relax =� dx�� dx��x�G�x�,x��;t�Pp�x��� = Qij�t�f j
�p�,

�18�

with the relaxation function Qik�t�=�t
dsXik�s�=Cij�t�	 jk

−1.
After differentiation with respect to time, one arrives at the
fluctuation-response relation: Eq. �6�.

To establish a clear connection between the response and
nonequilibrium fluctuations, let us analyze the quantity 	ij.
The essential feature of the nonequilibrium steady state is the
presence of nonvanishing probability current. In the Gauss-
ian regime, this corresponds to a circulating flux, which can
be invoked by representing the steady state covariance in the
form

Cik�0� = Kij
−1�Djk + � jk� , �19�

where the antisymmetric matrix

�ik �
1

2
�KijCjk�0� − Cji�0�Kkj� �20�

represents the deviation from the Onsager reciprocity for the
kinetic coefficient and called irreversible circulation of fluc-
tuation �8�. The steady state probability current ji�x��
=�ij� jP�x�� is generally a function of x� and divergenceless
(�i ji�x��=0). Using Eqs. �7�, �13�, and �19�, the quantity 	ij
is decomposed into two constituents,

	ik = Lij
−1�Djk + � jk� . �21�

Equation �21� clearly shows two requisites for the thermal
equilibrium: �1� a property of noise Dij =TLij, i.e., the rela-
tion known as FDT of the second kind, and �2� no presence
of the probability current �ij =0.

Now we proceed to express Eq. �6� in a frequency space.

Let us first Fourier-Laplace transform Eq. �6�: X̃ij���	 jk

=Cik�0�+ i�G̃ik���, where we have introduced X̃ij���
=�0

dt Xij�t�ei�t �complex admittance� and G̃ij���
=�0

dt Cij�t�ei�t. Using the property of the correlation func-
tion Cij�t�=Cji�−t� �as a consequence of the time transla-
tional invariance�, the power spectrum is expressed as

C̃ij���=�−
 dt Cij�t�ei�t= G̃

ji
*���+ G̃ij��� �the symbol A

ij
* de-

notes the complex conjugate of Aij�. Then, it follows that

�ij
�s��X̃������ = �C̃ij� ��� , �22�

�ij
�as��X̃������ = �C̃ji� ��� , �23�

where �ij
�s��A�=Aij +Aji and �ij

�as��A�=Aij −Aji represent the
symmetric and antisymmetric components of the matrix Aij,
and the prime and double prime denote the real and imagi-
nary parts, respectively. Note that the imaginary part of the
power spectrum is antisymmetric and connected to the
breaking of time-reversal symmetry,

C̃ij� ��� = Im�
0



dt�Cij�t� − Cij�− t��exp�i�t�� . �24�

From now on, we assume the FDT of the second kind,
i.e., Dij =TLij. While this implies that the microscopic de-
grees of freedom representing the heat bath is equilibrated,
the FDT of the first kind is not yet realized in the presence of
the nonconservative force Kij

�2�. From this and Eq. �21�, one
obtains

	ik = T�ik + Lij
−1� jk. �25�

By substituting Eq. �25� into Eqs. �22� and �23�, these are
written, respectively, as

T�ij
�s��X̃����� − �C̃ij� ��� = − �ij

�s��X̃����L−1�� , �26�

T�ij
�as��X̃����� + �C̃ij� ��� = − �ij

�as��X̃����L−1�� . �27�

It is evident from these expressions that the irreversible cir-
culation makes the fluctuation-response relation quite differ-
ent from that near equilibrium. That is, near equilibrium
where �ij =0, the right-hand side in Eq. �26� is zero �which
is referred to as the FDT of the first kind�, while both terms

1Note that the complex admittance is X̃ik���= �Kij − i��ij�−1Ljk

from Eq. �8�.
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of the left-hand size in Eq. �27� �C̃ij� ��� and the antisymmet-

ric part of X̃ij� ���� equally vanish, i.e., a manifestation of the
time-reversal symmetry and the reciprocal relation.

Equation �27� can be simplified further by taking notice of
the structure of the antisymmetric part of the admittance. Let
us here demonstrate it using the simplest case with two gross
variables. The real and imaginary parts of the admittance are
generally connected to each other through the Kramers-
Kronig relation. For example, in the case of a harmonic
oscillator �with one degree of freedom� in equilibrium,

ẋ=−K1x+��t�, the relation is given by X̃��0�= X̃�, with a
relaxation time �0=K1

−1. In the present case, one can, indeed,
show the following similar relation for the antisymmetric
part �9�:

�12
�as��X̃������ = − T��12�12

�as��X̃����� , �28�

with 	ij given by Eq. �25� and �12= 2
Tr�K� . Combining Eq.

�28� with Eq. �27� leads to the following relation between the
antisymmetric parts of the admittance and the Fourier trans-
form of the cross correlation:

T�12�12
�as��X̃����� = C̃12� ��� . �29�

This formula together with Eq. �26�, which is the central
result of the present paper, connects the nonequilibrium fluc-
tuation, i.e., the part which is odd under the time reversal
�Eq. �24��, to the asymmetry in the response function.

We emphasize that the formulas �26�, �28�, and �29� pro-
vide us with the procedure to explore the properties of the

nonequilibrium fluctuations. If the admittance X̃ij� ��� �or

X̃ij� ���� is experimentally accessible, one can obtain the re-
gression matrix Kij and the mobility matrix Lij from its lim-

iting behaviors �see footnote 1�: X̃ik��→0�=Kij
−1Ljk and

X̃ij��→  �= iLij�
−1. Then, from Eqs. �28� and �29� one ob-

tains the irreversible circulation �ij and the imaginary part of
the power spectrum C̃ij� ���, respectively, which are the most
relevant quantities to characterize the systems far from equi-
librium. Finally, Eq. �26�, together with the information so
far obtained, provides the real part of the power spectrum
C̃ij� ���, and thus, the complete knowledge of the correlation
function. Although our argument is valid only for the Gauss-
ian regime, this does not necessarily exclude the applicability
to the nonlinear dynamics. Even when the gross variables
obey the nonlinear equation of motion, fluctuations around
the secular motion might still be Gaussian, which is usually
expected for the macroscopic system. In such cases, all the
derived results can be applied without any modifications �9�.

In summary, we have constructed the linear response for-
malism around the nonequilibrium steady state in the Gauss-
ian regime. The main results are �I� the simple equation, Eq.
�29�, connecting the nonequilibrium fluctuation to the depar-
ture from the reciprocal relation and �II� the equation, Eq.
�26�, quantifying the FDT violation through the irreversible
circulation of fluctuation. These can be shown to be consis-
tent with other works on the fluctuation-response in nonequi-
librium steady state, in which the effect of nonlinearity is
highlighted �10–12�. While restricted, the present discussion
in the Gaussian regime enables us to establish the useful
formulas elucidating connections between essential quanti-
ties characterizing nonequilibrium steady state, through
which one can extract the role of the coupling between dif-
ferent degrees of freedom away from equilibrium.
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